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Due to coupling e�ect, we show that it is diÆcult to realize the left-handed material by placing metallic wires

directly into a ferrite matrix. However by introducing an insulating material round the metallic wires to decouple

the direct interaction between the metallic wire and ferrite matrix, we have proposed two microstructures, which

are shown by numerical simulation to have negative refractive indexes. The inuence of microstructure on the

transmission property is also examined.

PACS: 41. 20. Jb, 78. 20. Ci, 76. 50.+g

In the past few years, left-handed material (LHM)
with negative index of refraction[1] has given rise to
intense research activity, due to its potential appli-
cations in imaging[2] and many other �elds.[3;4] The
�rst idea of the material with both negative per-
mittivity and negative permeability was proposed by
Veselago in 1968, however only in 2001 was a left-
handed material realized for the �rst time by using
SRR (split-ring resonance) and periodically arranged
metallic wires (WIRE).[5] Since then, the research on
the LHMs has been intensi�ed, new LHM models have
been proposed,[6�8] and the theoretical analyses on
the energy transmission and material parameter iden-
ti�cation for the LHMs have been performed.[9;10]

In Veselago's pioneering paper,[1] he suggested use
of conductive ferrite to provide both negative permit-
tivity and negative permeability for the left-handed
material. Many works have followed this idea to fab-
ricate new left-handed materials.[8;11;12] In all of these
works, the metal is considered as plasma. However,
no experimental or numerical computation was per-
formed to verify these results. The essence of the
WIRE arrays to have a negative permittivity is that
during plasma resonance, the current induced by mov-
ing charges through the WIRE by an electric �eld
exceeds the current induced directly by the electric
�eld on the background, and these two currents ow
in opposite direction. However when WIRE is sur-
rounded directly by a material with negative perme-
ability, these two currents are of the same direction,
in this case the WIRE arrays have a positive permit-
tivity. Thus, the model of WIRE directly adding into
a ferrite matrix is diÆcult to form an LHM. We will
analyse this e�ect in detail through numerical simula-
tion.

We take Dewar's model (Fig. 1) [13] as an example
to show that the WIRE structure is hard to obtain
a negative permittivity in a ferrite background. Un-
der a static magnetic �eld, the ferrite has a tensorial

permeability:[11]
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gyromagnetic ratio, Ms is the saturation magnetiza-
tion, H0 is the applied static magnetic �eld, ! is the
wave frequency. When the wave vector and the mag-
netic �eld of the TEM wave are perpendicular to H0,
the e�ective relative permeability for the ferrite ma-
terial can be written in the form

�r = (�2 � �2)=�: (2)

Fig. 1. WIRE structure in ferrite matrix proposed by
Dewar.[13] The TEM wave is incident along the s direc-
tion, electrical �eld and static magnetic �eld are parallel
to the WIRE.

Pendry[14] proposed to idealize the WIRE struc-
ture as plasma, and he introduced the concept of ef-
fective mass of electrons:

me� =
�0�r

2e2n
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where �0 is the matrix permeability, r is the WIRE ra-
dius, a is the size of unit cell, e is the electron charge, n
is the active electron density in the WIRE. The plasma
frequency for the WIRE structure is estimated by

!2
p
= ne�e

2="0me� ; (4)

where ne� = n�r2=a2. Substituting Eq. (4) into the
Drude model, the e�ective dielectric constant of the
WIRE structure is provided by
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p
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; (5)

where � is the conductivity of the metal.
In Eq. (5), it is found that when !2 < !2

p
, we have

Re("e�) < 0. However, when the WIRE is embed-
ded in a ferrite matrix under a constant applied static
magnetic �eld, in the range of negative permeability
of the ferrite, the e�ective permittivity of the WIRE
may not be negative due to the coupling e�ect. Back
to formula (3), due to the negative permeability of the
ferrite matrix, the e�ective mass of electrons has the
form

me� =
�r�0�r

2e2n

2�
ln(a=r) < 0; (6)

where �r is the relative permeability of the ferrite,
and �r < 0. Substituting Eq. (6) into Eqs. (4) and (5),
we observe that !2

p
< 0 (the complex frequency has

been discussed by Wu et al.[17]), so no matter whether
!2 < j!2

p
j or !2 > j!2

p
j, we have Re("e�) > 0.

It can be concluded that if the WIRE is embed-
ded into a matrix with a negative permeability, due
to the coupling e�ect, it is diÆcult to obtain a nega-
tive e�ective permittivity of the composite. Dewar[8]

arrived at the same conclusion by solving a boundary
value problem.

Fig. 2. Transmission property of WIRE, ferrite and their

composite. Here !m = 
p
H0(H0 +Ms) is the ferromag-

netic resonance frequency, and !mp = (H0 +Ms) is the
anti-resonance frequency.

In addition, as ferrite usually possesses high rela-
tive permittivity, "r"0 should be utilized to replace "0

in Eq. (4). This signi�cantly reduces the plasma fre-
quency of the WIRE, typically to one tenth of that in
vacuum.

Consequently, the frequency range where the fer-
rite has negative permeability is higher than the range
necessary for a negative permittivity of the WIRE.
This is illustrated in Fig. 2, due to the coupling e�ect,
usually there is no overlap in the frequency for both
negative permittivity and permeability for the com-
posite, necessary to form a left-handed material.

From the above analysis, the key point to make
LHM from ferrite and WIRE is to decouple this direct
electromagnetic interaction. To this end, the following
three modi�cations can be proposed to reduce this in-
teraction, as shown in Fig. 3. Model A (proposed �rst
by Dewar[8]) is that the WIRE is surrounded by an
insulating layer, and the whole cell is together placed
into a ferrite matrix. Model B is that the WIRE is
placed into an insulating matrix, they are together
laid with ferrite vertically, model C is that the WIRE
is placed in an insulating matrix, and then they are to-
gether laid with ferrite horizontally. In all these three
models, a static magnetic �eld is applied along the Y
direction. From the point of fabrication, models B
and C are more easy to manipulate than model A.
Model C is similar to SRR plus a WIRE structure as
proposed by Shelby et al.,[5] where the SRR is replaced
by the ferrite material. In the following, we analyse
the transmission property of these materials.

Fig. 3. Top view of models to reduce electromagnetic
coupling. The TEM wave is incident along the z direc-
tion, with magnetic �eld parallel to x, the electric �eld
and applied static magnetic �eld parallel to y.

Finite element calculation on a ferrite material
with known property is �rst performed to check the
numerical method. Consider a ferrite of 3p�6�15mm,
which lies in a parallel plate waveguide (Fig. 4), where
p is the number of the element repeated in the x direc-
tion. The waveguide is a vacuum and two sides of the
x direction are set to be master{slave boundary condi-
tion (periodic condition) with zero phase delay. Of all
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models in this study, the ferrite is supposed to have a
saturation magnetization of 1700G, and a relative di-
electric constant 13. The applied static magnetic �eld
is 1256Oe.

When a TEM wave is incident along the z direc-
tion, with magnetic �eld parallel to the x direction,
and electric �eld parallel to the y direction, substitut-
ing ferrite's tensorial permeability (Eq. (1)) into plane
wave propagation equation, and noting k = kx, then
S-parameters can be estimated analytically, and they
are given by the following form:[10]

S11 =
R(1� T 2)

1�R2T 2
;

S21 =
T (1�R2)

1�R2T 2
; (7)

where R = (z� 1)=(z+1); T = exp(�ip"r�rk0d); �r
is the ferrite e�ective permeability given by Eq. (2);
k0 is the vacuum wave vector; d is the thickness of
model. Figure 5 gives the S-parameter S21 estimated
from Eq. (7) and calculated by the HFSS method.[15]

Fig. 4. Finite element model for a plate waveguide, pe-
riodic condition along the x direction. Top and bottom
surfaces in the y direction are PEC, front and back sur-
faces in the z direction are two waveports.

Fig. 5. Comparison between analytical results (dotted
line) and HFSS result (solid line) for transmission prop-
erty S21.

As shown in Fig. 5, both the analytical and HFSS
results for the S21 parameter predict stopband extend-
ing from 5.3 to 8.2GHz, in which S21 is less than
�30 dB (see Fig. 5). The results predicted by the two
methods agree well in a large part of frequency range.

The curve rises less shapely at the right part within
the stopband, this is due to a small negative perme-
ability of the ferrite at these frequencies. The applied
static magnetic �eld also interferes with the stopband,
which is explained in Fig. 2.

The �nite element model for the new proposed
structures proposed previously is the same as shown
in Fig. 4. The transmission property S21 is calculated
for the three microstructures, the computed results
are shown in Fig. 6, the result of Dewar's initial model
(Fig. 1) is also included for comparison. Compared to
the pure ferrite material (Fig. 5) and Dewar's initial
model, it is found that there exist some passbands for
the composites (models A, B, C) approximately span-
ning from 6.75 to 7.75GHz, originally these passbands
lie within the stopbands of the ferrite matrix, however
the initial model (Fig. 1) proposed by Dewar has no
passband. This indicates that the proposed compos-
ites have both negative permittivity and permeability.
We have checked from the phase diagram, indeed in
this frequency range, the composites are left-handed
materials. In the three models, the ferrite occupies a
volume function of 66%, 73% and 67%, respectively.
The radii of all metallic wires are 0.15mm.

The simulated results show that by including an
insulating material round metallic wires, the electro-
magnetic coupling e�ect is greatly reduced. This
makes left-handed materials possible from ferrite and
WIRE. According to Eq. (4), the presence of large vol-
ume fraction of ferrite lowers the plasma frequency of
the WIRE typically from 50 to 7GHz, this is why
S21 is still very high for the frequency above 8.2GHz.
When the frequency is slightly larger than the reso-
nance frequency of the ferrite (5.3GHz), the absolute
value of the ferrite permeability is reduced quickly, the
e�ective permeability of the element is dominated by
the WIRE and insulating material.

Fig. 6. Simulated transmission property S21 for models
A, B, and C, and Dewar's initial model.

Figure 7 shows the electric �eld variation as a func-
tion of time along the central line (along the z direc-
tion) of the models A, B and C, respectively. For the
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electric �eld E0 exp(i(kz�wt)), let the phase be a con-
stant (here we take to be 0), we can obtain constant
phase diagram, which can be written as[16]

z =
1

k
!t: (8)

The slopes of the black line in Fig. 7 are negative, indi-
cating that their wave vector k is negative. Refractive
indexes of the composites can be estimated directly
from Fig. 7 by k, these results are listed in Table 1,
the complex refractive indexes can also be evaluated

directly from transmission property S11 and S21,
[10]

they are also listed for comparison. A good agreement
is observed.

In order to have an optimal design for the mi-
crostructure, the inuence of microstructure param-
eters on the transmission property is examined, the
computed S21 as a function of the ferrite volume frac-
tion and the radius of WIRE for model C at 7.0GHz
is shown in Fig. 8. In the computation, the WIRE is

Fig. 7. Electric �eld variation through the centre of models A, B, and C, at frequencies of 7.0, 7.2 and 7.0GHz, respectively.

Table 1. Refractive indexes n0

e� estimated from the S parameters and n0 obtained from Fig. 7.

Model f (GHz) S0

11 S00

11 S0

21 S00

21 n0

e� n00

e� n0

A 7.00 �0:84 0.09 0.05 �0:003 �3:09 0.87 �3:0
B 7.20 �0:86 0.23 0.03 0.0006 �3:10 0.87 �3:0
C 7.00 �0:60 �0:04 0.07 �0:01 �2:88 0.99 �2:9

Fig. 8. Inuence of ferrite volume fraction and WIRE
radius on transmission property S21.

assumed to be placed in the middle of insulating ma-
terial. When the radius of the WIRE varies from 0.10
to 0.24mm, S21 is only slightly reduced. It is also
found that S21 reaches a maximum value at 60% vol-
ume fraction of ferrite (the 1.8mm width of the ferrite
in the cell). Thus optimal design of the microstruc-
ture for the left-handed material will be useful, and
this will be a subject of our future works.

In conclusion, we have shown that due to the elec-
tromagnetic coupling e�ect, it is diÆcult to make left-

handed materials directly by embedding metallic wires
into ferrite matrix. By introducing an insulating ma-
terial round the WIRE, we have proposed two new mi-
crostructures made of WIRE, insulating material and
ferrite, which are shown by numerical simulation to
have negative refractive indices in certain frequency.
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